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Abstract 

The paper uses Monte Carlo algorithms applications to solve large-scale and sparse linear 

systems that have a significant spectrum of application in the modern field of computation 

science. Monte Carlo techniques can be used to compute accurate approximations by building 

up the expected value as the trajectory of random walks and the techniques naturally lend 

themselves to parallel computation by splitting the trajectory among several processors. The 

necessity of scalable and memory and parallelism numerical approaches has become obvious 

as the high-performance and exascale computing architectures develop to a new level. The 

Neumann-Ulam stochastic methods may indeed offer a valid alternative to the traditional 

solvers, including direct and iterative ones. This research article uses Python-program-based 

applications to analyse the speed of computation on the systems of varying size (n = 100, 500 

and 1000). The data indicates that the method would perform comparable in terms of accuracy 

with the more expensive standard direct solvers and that the absolute error can be reduced with 

the number of samples used. The algorithm has good scaling properties suggesting that it 

possibly can be efficient in running large-scale scientific and engineering tasks. The results 

support the general agenda of introducing probabilistic numerical approaches into the 

computational pipelines, especially in the context of cases where memory restrictions or heavy 

needs of parallelization are essential factors. 

 

Keywords: Monte Carlo approaches, Exascale architectures, Neumann-Ulam approach, 

Stochastic solvers, Direct iterative solvers. 

  

mailto:agbadebo@wsu.ac.za


International Journal of Social and Educational Innovation (IJSEIro) 

Volume 12/ Issue 24/ 2025 
 

248 
 

Introduction 

This exascale computing can mark a revolutionary point of the history of high-performance 

computing (HPC). Systems like the currently commissioned Frontier by Oak Ridge National 

Laboratory in 2022 or made the transition over the exascale threshold, which can enable an 

unprecedented level of possible computation (DOE, 2022). Such technological advances would 

enable significant breakthroughs in areas where modeling and simulation commonly approach 

petascale-scale computations, such as climate dynamics, astrophysical processes, genomics 

informatics and nuclear processes modeling (PNNL, 2023). However, hardware innovation 

alone is not the only factor that matters when it comes to the actualization of such prospects. 

Instead, it can be critically reliant on the development of software algorithms that can 

effectively cumulate with complexity of the contemporary exascale systems (TechUK, 2024). 

The software development remains a severe limitation despite the fact that the hardware 

frontier has gone far. Traditional algorithm-based solutions might not be suitable when scaled 

to the exascale range where the constraints on trial and error, in inter-processor communication, 

excessive synchronization costs, and poor memory access patterns usually play a limiting role 

(Zhou et al., 2021). Additionally, the heterogeneity of architectures used in present 

supercomputing systems also creates extra complexities, thus requiring further differentiated 

algorithms (Gupta & Bhatia, 2023). Getting to sustainable performance on a large scale might 

thus depend on an all-encompassing strategy to scalability, including architectural alignment, 

optimization of the software layers, and mathematical reformulations (Jin et al., 2020). 

Monte Carlo methods seem especially appropriate among the types of algorithmic paradigm 

studied to solve such problems. These stochastic algorithms are inherently compatible with 

parallel framework, and they could be robust when workloads are uneven and their latency is 

high (Li & Pavlov, 2021). Owing to their probabilistic natures, they are designed to tackle 

uncertainty and high-dimensional spaces, which is common in fields like stochastic modeling, 

risk quantification, and statistical mechanics (Wang et al., 2022). The recent empirical studies 

have proposed that Monte Carlo algorithm in properly tuned conditions can scale to thousands 

of processing units in near-linear time (Zhang & Matsuoka, 2023). 

The article describes the basics of the design of scalable Monte Carlo algorithms to solve large 

sparse linear systems, and especially the Neumann-Ulam formulation. Our extensions to 

computational finance (another area that is widely modeling-stochastic and computationally 

challenging, beyond the linear algebra setting) are also beyond the subject of the paper. Monte 

Carlo methods can possibly provide a desirable alternative to the traditional solvers in the 
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exascale setting, specifically where decreased synchronization, increased memory cost-

efficiency, and the use of parallel independence are determinants (Kaur et al., 2024). The 

potential areas of applicability of the exemplified approach include financial applications, e.g., 

derivative pricing and portfolio risk evaluation, which can specifically take advantage of the 

features of the probabilistic structure and parallelism of the discussed methods (Cheng et al., 

2021). 

The study relates the theory and simulation validation by attaching the feasibility of Monte 

Carlo solvers to approximate the linear systems with greater orders as time goes on despite 

limited computational points. It is work in the context where the effort to alleviate the 

performance bottlenecks that algorithmic frameworks are facing in the exascale era is ongoing. 

With the direction of computing infrastructure toward tens of millions and more simultaneous 

threads, it is possible that the creation of fault-tolerant, architecture-aware algorithms will be 

necessary. The goal of the study is not only to improve the numerical performance of Monte 

Carlo methods in the linear-algebra systems and financial computation but also seeks to gain 

an interdisciplinary approach to proposing a scalable Monte Carlo method in scientific 

computing. The latter results are of particular importance when advocating the necessity of 

crosscutting research, which can be implemented across these fields: the field of numerical 

analysis, the field of high-performance software engineering, and the field of applying domain-

specific modeling in the era of exascale computing (Huang et al., 2025). 

 

2. Monte Carlo Algorithm for Solving Linear Systems 

The issue of solving large-scale linear systems is one of the primary problems of computational 

science and engineering. The problem is that classical deterministic solvers are resource-

intensive to a point where they cannot be used at all, especially when it comes to the systems 

whose characteristics include either high dimensionality or high sparsity. Such traditional 

approaches usually face the hurdle of scalability of the memory capacity as well as 

computational cost as more systems are added. As an alternative possibility, Monte Carlo 

methods provide a probabilistic model of calculation that can potentially more effectively 

resolve these problems particularly when distributed or exascale computer architectures are 

being used. 

The Monte Carlo techniques seem to be especially applicable to the issues that arise in the field 

of radiation transport, financial risk modeling, partial differential equation simulation on a large 

scale (Mascagni & Bailey, 2020). They are stochastic by nature, which helps in load balancing 
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and being executed in parallel, which may be beneficial in large heterogeneous computing 

involving large numbers. Additionally, the versatility on the various problem form structure 

and hardware architectures could be a source of their increasing utility in high-performance 

computing settings. With the growing availability of exascale systems, Monte Carlo solvers 

may have the potential of assisting scientific research at new levels of scale and at a significant 

level with an alternate to the more stiff deterministic solvers. 

The core idea of Monte Carlo algorithms for linear systems is to estimate the solution 𝑥 ∈ ℝ𝑛 

to the equation 𝐴𝑥 = 𝑏, where 𝐴 ∈ ℝ𝑛×𝑛, using a stochastic process. Specifically, under 

suitable conditions, the inverse of 𝐴 can be represented by a Neumann series. Suppose that the 

system is preconditioned or transformed such that 𝐴 = 𝐼 −𝑀, with 𝜌(𝑀) < 1, where 𝜌(⋅) 

denotes the spectral radius. The inverse of 𝐴 can then be expressed as: 

𝐴−1 = (𝐼 − 𝑀)−1 = ∑ 𝑀𝑘∞
𝑘=0 ,        (1) 

which yields the formal solution: 

𝑥 = ∑ 𝑀𝑘∞
𝑘=0 𝑏.          (2) 

The Monte Carlo algorithm applied to linear algebra, and specifically designed for solving 

large linear systems is provided. This method is valuable when dealing with sparse or very 

large matrices, and is particularly well-suited for parallel and exascale computing environments 

due to its probabilistic and iterative nature. 

Algorithm Steps (Monte Carlo Neumann-Ulam Method) 

1. Initialization 

o Choose the number of histories 𝑁 (number of random walks). 

o Choose a preconditioner or transform 𝑀 such that 𝐴 = 𝐼 −𝑀 and 𝜌(𝑀) < 1. 

2. Random Walk Generation For each 𝑖 = 1, … , 𝑁: 

o Start at a randomly selected row 𝑟0. 

o For each step 𝑘, select the next state 𝑟𝑘+1 based on transition probabilities 

derived from 𝑀 (e.g., normalize row weights). 

o Accumulate the contribution of each walk to the estimate of 𝑥 using weights 

from 𝑏 and matrix entries. 

3. Estimate Solution 

o The result 𝑥𝑗 at each index 𝑗 is computed as the mean contribution of all walks 

ending at or passing through 𝑗. 
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Some Key Features 

• Parallelizable: Each random walk is independent and can be executed in parallel (ideal 

for GPU and exascale architectures). 

• Scalable: Handles sparse matrices well, with memory and computation growing 

linearly with matrix size. 

• Probabilistic Accuracy: The solution is approximate and improves with more walks 𝑁. 

 

3. Results 

Each term in the corresponding matrix expansion may be interpreted as a weighted contribution 

derived from successive matrix-vector multiplications, which can be approximated 

stochastically through the use of random walks. This strategy forms the basis of the Neumann-

Ulam Monte Carlo method, wherein an ensemble of random walks is generated to 

probabilistically estimate the contributions to the solution vector 𝐱 (Ji et al., 2022). 

The general structure of the Monte Carlo solver typically begins with the derivation of a 

transition probability matrix 𝐏, constructed from the original matrix 𝐌, often through row 

normalization of its nonzero elements. 

They then initialise a collection of statistically independent, random walks in which each walk 

follows a chain of transitions according to the probability structure encoded in 𝐏., and along 

the way a scalar weight is acquired by adding together the initial right-hand side vector 𝐛 and 

the matrix entries visited.  The estimate 𝑥̂𝑗 for the 𝑗-th component of the solution of all the 

random walks which either end at state j, or pass through it, the estimate 𝑥̂𝑗 is then reached. In 

the case of finite variance and appropriate conditioning of the matrix 𝐌,, the estimator does 

not show bias and can approach the actual answer with more walks (Ubaru, Chen, & Saad, 

2017). 

There are a number of computational advantages brought by this stochastic formulation. 

Remarkably, it is tolerant to parallelism, by the fact that random walks could be performed in 

parallel, that attribute which makes the method so acceptable by massively parallel hardware 

like GPU clusters and exascale computing frameworks. Also, the algorithm has low memory 

requirements and does not require matrix factorization or significant intermediate storage. 

Monte Carlo solvers can also exhibit good behaviour with sparse, or diagonally dominant 

matrices, situations in which the standard iterative schemes can be problematic due to the lack 

of convergence or may require advanced preconditioning strategies (Mascagni & Bailey, 2020; 

Huang et al., 2025). 



International Journal of Social and Educational Innovation (IJSEIro) 

Volume 12/ Issue 24/ 2025 
 

252 
 

Monte Carlo solvers are applicable in a range of fields in science and engineering. As an 

example, neutron transport equations are problems involving inherently probabilistic particle 

interactions, and random walk models are very applicable. These solvers are applicable in 

computational finance to discretize and solve partial differential equations concerned with the 

option price or to model risk propagation through a large scale financial system. They can also 

be adapted to resilient, fault-tolerant computing environments operating at scale because of 

their tolerance of localized error and ability to provide asynchronous updates (Rahman & Liu, 

2023). 

However, it is not free of disadvantages of such a class of algorithms. This can specifically 

occur in the case of high variance in the estimator or eigenvalues of the matrix spectrum being 

close to unity. In order to alleviate these shortcomings, importance sampling, variance 

reduction and stratified sampling have been suggested to enhance the effectiveness of 

computation. Hybrid frameworks which mix deterministic preconditioners with Monte Carlo 

estimators have also been recently developed, and they could achieve good trade-offs between 

accuracy and scalability (Zhang & Matsuoka, 2023). 

 

3.1. Main Outcome  

Figure 1a presents a comparative visualization of the solution vectors obtained via the Monte 

Carlo method and a standard direct solver. The analysis considers a sparse linear system of 

dimension n=100n = 100n=100, with the deterministic reference computed using the spsolve 

routine. The left subplot displays the element-wise solution, where the solid curve represents 

the output from the direct solver—serving as a benchmark—while the dashed curve 

corresponds to the stochastic estimate derived through the Monte Carlo approach. The close 

alignment between the two curves suggests that the Monte Carlo method can produce an 

approximate solution that reasonably reflects the deterministic benchmark. This observation 

holds despite the relatively modest configuration of 2,000 random walks and a maximum walk 

length of 50, indicating that even limited sampling may suffice for small-scale systems under 

certain conditions. 

Figure 1b depicts the absolute error associated with each index, computed as the pointwise 

difference between the Monte Carlo estimate and the direct solver result. Although minor 

variations are visible across indices, the errors generally remain bounded and modest in 

magnitude. The absence of significant outliers or large deviations may indicate a controlled 

variance in the stochastic estimator under the current simulation parameters. These error levels, 
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while not negligible, appear acceptable given the scale of the problem and the simplicity of the 

Monte Carlo configuration employed. 

Such empirical findings are broadly consistent with theoretical expectations for Monte Carlo-

based solvers applied to linear systems. Specifically, the accuracy of the solution is expected 

to improve with an increasing number of random walks, albeit at the expense of higher 

computational cost (Mascagni & Bailey, 2020; Ji et al., 2022). The demonstrated performance 

reinforces the potential viability of Monte Carlo methods as alternatives to conventional 

deterministic solvers, particularly for large and sparse systems where scalability becomes a 

limiting factor. Furthermore, the inherently parallel structure of Monte Carlo algorithms may 

make them particularly advantageous in exascale computing environments, where abundant 

computational resources can be harnessed to increase both precision and efficiency without 

incurring significant synchronization overhead. 

 

Figure 1a: Solution Comparism Direct Solve & Monte Carlos           Figure. 1b: Absolute Error per Index   

Source: Author (2025) 

 

3.2. Sensitivity Analysis 

To assess the robustness and scalability of the Monte Carlo solver, a sensitivity analysis was 

conducted by extending the implementation to larger system sizes, specifically n=500n = 

500n=500 and n=1000n = 1000n=1000. The findings, which are represented in Figures 2 and 

3, show empirical evidence regarding the ability of the algorithm to scale and maintain 

accuracy in solving big and sparse linear systems. In both figures, the plots indicate that the 

Monte Carlo estimates are closely clustered with the reference solutions, which are produced 

by the deterministic sparse solver (spsolve), and therefore, the stochastic method could still 

yield meaningful estimates with a rise in the dimension of the systems. 



International Journal of Social and Educational Innovation (IJSEIro) 

Volume 12/ Issue 24/ 2025 
 

254 
 

In the n = 500n = 500n = 500 case, Figure 2 in the left-hand panel, there is a good 

correspondence between stochastic estimate and direct solution with only small deviations at 

isolated indices occurring. The adjacent absolute error plot on the right also shows that the said 

discrepancies are quite small and equally spread throughout the solution vector. This can be an 

indication that the algorithm is numerically stable and good at moderate problem sizes, 

especially when the same set up is used (2000 random walks and walk length of 50 is kept 

intact). 

Such observations are aligned with both theoretical properties of Monte Carlo methods that 

generally enjoy the benefit of statistical averaging over independent trajectories and positive 

convergence behavior in well-conditioned situations. As system size grows, the preservation 

of the low and bounded profiles of the errors of the various components of vectors could be a 

feature that indicates the preservation of the viability of the method. This is of extreme 

relevance in the sphere of large-scale simulations where the traditional solvers are usually 

limited in the sphere of memory or communication overhead. The results indicate that use of 

minimal tuning of the Monte Carlo approach is able to support the problem increase in size 

without significant loss in the quality of solution. 

 

Figure 2: Solution Comparism for Direct Solve and Monte Carlos (LHS) and Absolute Error per Index (RHS) 

Source: Author (2025) 

 

The solution generated by the Monte Carlo method does not seem to get lost as the 

dimensionality of the system goes to n=1000n = 1000n=1000, with a slight rise in noise figure 

in the approximation. The associated absolute error diagram also displays the spread of 

deviations, which can be explained by the fact that stochastic variability combines when 
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moving to a larger solution space due to sampling. However, the lack of apparent erroneous 

spikes and the fact that the entire structure of the solution is maintained indicate that the method 

is persevering with this elevated scale. The results are consistent with theoretical expectations 

of the convergence of Monte Carlo solvers in mean-square norm and that the method is accurate 

with the sampling of the number of trajectories (Mascagni & Bailey, 2020; Ji et al., 2022). 

This result also demonstrates the practical usefulness of Monte Carlo methods in solving 

problems of high dimension where deterministic applications of such solvers can prove highly 

impractical either in terms of computational cost or memory requirement. The parallelism of 

the algorithm is intrinsic to individual random walks, and therefore, the algorithm is quite 

interesting to run on modern high performance and exascale computers (Ubaru, Chen, & Saad, 

2017). The convergence behaviour with respect to the size of the problems thereby implies that 

the Monte Carlo solvers might be a scalable and resources-effective means of solving large 

sparse linear systems. 

 

 

Figure 3: Solution Comparism for Direct Solve and Monte Carlos (LHS) and Absolute Error per Index (RHS) 

Source: Author (2025) 

 

Conclusions 

This study considers the scalability and applicability of the Monte Carlo algorithms, especially 

the Neumann-Ulam approach, to the large, sparse linear systems. The combination of 

theoretical exposition and empirical simulations has supported the findings that stochastic 

solvers could produce reliable approximation in scaling with the dimensionality of problems, 

as well as low computational requirements. The universal parallelism and probabilistic nature 

of the Monte Carlo methodology makes it one of the prime candidates to be used when direct 



International Journal of Social and Educational Innovation (IJSEIro) 

Volume 12/ Issue 24/ 2025 
 

256 
 

or iterative algorithms cannot be used because of the size of the computation problem and the 

necessity of dealing with a large amount of data, and with efficiency of memory usage, 

computational scalability, and parallel processing. 

The empirical evidence supports this assertion on the results given by The Monte Carlo 

estimates are tightly convergent when measured by the solutions acquired through 

deterministic sparse solvers. Absolute errors were reasonably and rather tightly distributed 

regardless of the size of the problem, and the deviations were smaller when more samples were 

selected, and this result gives credence to the convergence characteristics and the strength of 

the method. These findings support the practicability of the approach with computing 

applications in quantum finance, big-physics simulations, and high-performance scientific 

computing. 

Moreover, the stochastic independence of the algorithm and its parallelizability makes it highly 

suitable to more modern architectures, which tend to include support for concurrency 

(examples include multiprocessor powers/Processors and graphics Processors). The fact that it 

retains accuracy in the solution whilst growing with the system gives it the potential to alleviate 

solutions of linear algebra in the frontier of exascale computing. 

In prospect, there is the possibility of future study into the combination of techniques used in 

variance reduction, adaptive sampling heuristics and into the combination of the Monte Carlo 

solvers based on hybrid schemes using preconditioned iterative solvers. These modifications 

can help to achieve a higher rate of convergence as well as having a broader scope to ill-

conditioned or structurally inconsistent systems. Overall, Monte Carlo algorithms are an 

effective and scalable framework toward solving linear systems, with future promise of ultra 

high performance computing systems and on large scientific problems. 
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Appendix 

Python implementation of the Monte Carlo Neumann-Ulam method for solving linear systems Ax=bAx = bAx=b. 

import numpy as np 

def monte_carlo_solver(A, b, num_walks=10000, walk_length=100): 

    n = A.shape[0] 

    x_estimate = np.zeros(n)       # Assume A = I - M → M = I - A 

    M = np.eye(n) – A     # Normalize M row-wise to get transition probabilities 

    P = np.zeros_like(M) 

    for i in range(n): 

        row_sum = np.sum(np.abs(M[i])) 

        if row_sum > 0: 

            P[i] = np.abs(M[i]) / row_sum 

      # Monte Carlo random walks 

    for _ in range(num_walks): 
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        # Start from a random initial index 

        i = np.random.randint(n) 

        weight = b[i] 

        current = i 

          for _ in range(walk_length): 

            # Add current contribution to estimate 

            x_estimate[current] += weight 

                        # Choose next step based on transition probabilities 

            probs = P[current] 

            if np.sum(probs) == 0: 

                break  # dead-end 

            next_state = np.random.choice(n, p=probs/np.sum(probs)) 

              # Update weight 

            weight *= M[current, next_state] 

            current = next_state 

# Average estimate over number of walks 

    x_estimate /= num_walks 

    return x_estimate 

 

Visualization Code 

python 

CopyEdit 

import numpy as np 

import matplotlib.pyplot as plt 

from scipy.sparse import diags 

from scipy.sparse.linalg import spsolve 

 

# ----- Setup: Create sparse system ----- 

n = 100 

diagonals = [[4] * n, [-1] * (n - 1), [-1] * (n - 1)] 

A_sparse = diags(diagonals, [0, -1, 1], format='csr') 

b = np.random.rand(n) 

 

# ----- Monte Carlo Solver ----- 

def monte_carlo_sparse_solver(A, b, num_walks=20000, walk_length=50): 

    import scipy.sparse as sp 

 

    n = A.shape[0] 

    x_estimate = np.zeros(n) 

    if not sp.isspmatrix(A): 
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        A = sp.csr_matrix(A) 

    I = sp.identity(n, format='csr') 

    M = I - A 

    P = sp.lil_matrix((n, n)) 

    for i in range(n): 

        row = M.getrow(i) 

        row_sum = np.sum(np.abs(row.data[0])) if row.nnz > 0 else 0 

        if row_sum > 0: 

            P[i, row.indices] = np.abs(row.data[0]) / row_sum 

    P = P.tocsr() 

    for _ in range(num_walks): 

        i = np.random.randint(n) 

        weight = b[i] 

        current = i 

        for _ in range(walk_length): 

            x_estimate[current] += weight 

            row = P.getrow(current) 

            if row.nnz == 0: 

                break 

            probs = row.data[0] 

            indices = row.indices 

            probs /= np.sum(probs) 

            next_state = np.random.choice(indices, p=probs) 

            weight *= M[current, next_state] 

            current = next_state 

    x_estimate /= num_walks 

    return x_estimate 

 

# Solve both 

x_mc = monte_carlo_sparse_solver(A_sparse, b) 

x_direct = spsolve(A_sparse, b) 

 

# ----- Plotting ----- 

plt.figure(figsize=(12, 5)) 

 

# Solution comparison 

plt.subplot(1, 2, 1) 

plt.plot(x_direct, label='Direct Solve', linewidth=2) 

plt.plot(x_mc, label='Monte Carlo Estimate', linestyle='--') 

plt.title('Solution Comparison') 
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plt.xlabel('Index') 

plt.ylabel('Value') 

plt.legend() 

 

# Error plot 

plt.subplot(1, 2, 2) 

plt.plot(np.abs(x_mc - x_direct)) 

plt.title('Absolute Error per Index') 

plt.xlabel('Index') 

plt.ylabel('Error') 

 

plt.tight_layout() 

plt.show() 

 


